
Diffuse and specular interreflections with classical,
deterministic ray tracing

Gergely Vass
gergely_vass@siggraph.org

Dept. of Control Engineering and Information Technology
Technical University of Budapest

Budapest, Hungary

Abstract

Today almost all the free as well as the commercial 3d graphics applications - which claim to be
photorealistic - are capable to render images using the ray tracing algorithm. This method handles
only one kind of light transport between surfaces, namely the total, mirror-like reflection. In this
paper a simple practical method is going to be presented to extend the capabilities of the classical
ray tracing algorithm. The proposed workflow makes diffuse light transport possible and the use of
area lights instead of the common point, spot and directional lights. The possible difficulties
applying the proposed procedure in different software environments is going to be discussed as
well.

Keywords: rendering, global illumination, ray tracing, reflection

1. Introduction

The great improvement in the computing power of standard desktop computers made possible to use
complex rendering softwares to generate photorealistic images [5]. There are many commercial 3d
graphics applications on the market, which simulate the behavior of light so convincingly, that the
resulting image looks real. These programs use state of the art technology and are hard to get acces
to. The widely used and the free 3d applications generate images in much less time, but use simpler
rendering methods. These algorithms - like ray tracing - make lot of compromise in order to avoid
long render times keeping the image as real as possible. In the next part these simple and commonly
used rendering methods will be discussed focusing on their strengths and weaknesses.

1.1 The Common Rendering Algorithms
Today's graphics systems are pixel based. This makes the basic step of image synthesis the
calculation for each pixel's color. This color value is proportional to the incoming radiance to the
camera from a given direction. This physical value is a very hard and resource intensive problem to
solve for, even if the wave properties of light or the presence of liquids and gases are ignored. The
problem can be expressed in the form of the rendering equation [6]:

ωθωωωωωω ′′⋅′⋅′′−+= ∫Ω dxfxhLxLxL r
e cos),,()),,((),(),(����

 (1)

This equation shows how the radiance (),(ωxL �) can be calculated from a given surface element:
the surface's light emission (),(ωxLe �) and the fraction of the incoming light that reflects to the
camera should be added together. In order to express the second term the light from all possible
incoming direction should be taken into account weighted with the bidirectional reflectance
distribution function (BRDF) and the cosine of the incoming angle.

Let us introduce the τ integral operator, which describes the light-surface interaction:

∫
Ω

′′⋅′⋅′′−= ωθωωωωωτ dxfxhLxL r cos),,()),,((),)((���

 (2)

Using the operator above the rendering equation can be written in a compact form:

LLL e τ+= (3)

The unknown radiance “L” is both dfgd inside and outside of the operator, which makes the
problem very complex. Because the operator cannot be inverted it os not possible to eliminate the
coupling. Fortunately the problem can be solved using a simple trick: the whole right side should be
substituted in the unknown function of the same side. This transforms the integral equation into an
infinite series:

...32

0

++++==∑
∞

=

eeee

i

ei LLLLLL ττττ (4)

The elements represent the direct emission, the single reflection, the secondary reflection and so on.
The elements of the series are integrals with increasing dimensions. The simple rendering
algorithms do not even try to solve the equation in this form. The local illumination method tries to

solve for only the first two elements of the series, ray tracing eliminates the integral from every
element making the series into a much simpler sum.

Local Illumination
Almost all of the commonly used 3d graphics programs make use of the local illumination model.
This is a drastic simplification of the rendering equation. It is assumed that the look of real world
surfaces can be determined by calculating direct emission and single reflection only. The rest of the
infinite series is expressed in one, user defined ambient term. Using this assumption only one
integral of one dimension should be calculated. This integral is supposed to sum the incoming
radiance from all directions. Because this calculation is still hard and time consuming to do the local
illumination model simplifies the equation even more.
It is known that integrating any combination of Dirac delta functions is very easy, since the integral
equals the sum of few values. In the case of the rendering equation the incoming radiance is a
combination of Dirac delta functions only if the light sources are infinitesimally small. The local
illumination model uses only ambient, directional, point and spotlights - and ignores objects with
self illumination - when calculating the incoming radiance in order to eliminate the hard integral.
This model would be useless if the generated pictures were far from real but fortunately that is not
the case. In real life and especially in case of artificially lit environments the dominant light sources
determine the look of objects, and the intersurface light reflections have only secondary importance.
In cases when reflected light acts as important light source in the local illumination environment the
user have to define more abstract lights to achieve the desired effect. This method is physically
incorrect and it might be uncomfortable as well, however in production environment the method has
proven it's usability [1].
The rendering equation using the local illumination model turns out to be very simple due to the
Dirac delta type light sources:

AMBIENTxfxLIGHTxLxL iiir

ghtsnumberofli

i
ii

e +′⋅′⋅′+= ∑
=

θωωωωω cos),,(),(),(),(
1

����

 (5)

Where the function),(ωxLIGHTi
� represents the the incoming radiance from the i-th lightsource to

the point x� from the direction ω . In this equation the rendering equation (1) is reduced to the sum
of few, easily computable terms.

Recursive Ray tracing
The ray tracing algorithm [4] is a very common extension of the local illumination method. Using
ray tracing the total reflection and the refraction of light can be simulated correctly. This effect is
very important since the reflection seen on shiny surfaces - like chrome, glass or car paint -
determine the overall look of these objects.
The implementation of ray tracing is based on the local illumination model. Knowing the normal
vector of the rendered surface element the reflection and refraction directions can be calculated.
Calling the already implemented local illumination algorithm in these directions the value of the
incoming light reflected or refracted toward the camera can be easily calculated. This process is able
to work recursively and follow a “ray" from the camera along the path of the incoming light rays.

AMBIENTRRxhLRLxhL

xfxLIGHTxLxL

refractrefractreflectreflect

iir

ghtsnumberofli

i
ii

e

+⋅+⋅+

+′⋅′⋅′+= ∑
=

)),,(()),,((

cos),,(),(),(),(
1

ωωωω

θωωωωω

��

����

 (6)

This formula is the extension of the equation for local illumination (5). The two new terms are the
reflected and refracted light rays which can be calculated recursively. If no abstract lights are used
for the local illumination the only thing that effects the final rendering is the self illumination and
ray tracing:

RRxhLRLxhLxLxL refractrefractreflectreflecte ⋅+⋅+=)),,(()),,((),(),(ωωωωωω ����

 (7)

This equation is practically equation (6) without the terms of equation (5). If only non-transparent
surfaces are used the third term can be ignored. Considering the first two terms it is surprisingly
similar to the rendering equation in the form of equation (3). The recursive ray tracing algorithm
doesn't neglect any term of the infinite series, the only simplification comparing to the original is the
BRDF which consists of Dirac impulses. This likeliness makes the use of the ray tracing method
possible to calculate the rendering equation, or in other words: to solve global illumination
problems.

Global Illumination
There are numerous methods to solve the rendering equation [6] with no - or not much -
simplification. These algorithms - like Monte Carlo integration [8] - often handle not only mirror
like surfaces but glossy and diffuse objects as well and are called global illumination renderers. The
goal is to achieve the same realistic result with the commonly used ray tracing softwares without the
need of modifying the program.

1.2 “Fake Radiosity"
There are some tricks used in the 3d graphics community intended to simulate the effect of global
illumination. These tricks - often called “fake radiosity" methods - can be classified into two major
groups:
• Non-automatic process: the user places secondary point lights near bright areas simulating the

effect of diffuse light reflection. This can be very tedious and slow process.
• Automatic process [3]: this trick is similar to the proposed method in this paper, but works for

only one object at a time. The user has to filter or blur manually a very bad quality - noisy -
result and usually composite it back to the rendered image calculated with local illumination.

The proposed method works for all objects in the scene and is far more physically accurate than the
available “fake radiosity" tricks.

2. Extending Ray tracing

The main goal is to prepare the ray tracing algorithm to handle glossy and diffuse reflecion. The
local illumination capability of the softwares is not used at all, since it doesn't calculates any
secondary light reflection. However, local illumination – using models like Phong and Lambert –
could be used to calculate the “first shoot” or the direct illumination of lights but this option was
thrown away because the following reason. It required to have point lights defined – instead of light
emitting objects – thus the characteristic shadows would be not soft at all. In fact the local
illumination method is not able to generate realistic soft shadows, which is overcomed using ray
tracing for the first shoot too.

2.1 Creating Diffuse Surfaces
It has to be investigated how diffuse materials work in the real world to achieve the same result on
the virtual surfaces. The perfectly diffuse behavior is described by the Lambert model. This model
supposes that the incoming light is reflected in all directions with the same intensity. In reality
diffuse objects have such microscopic structure that the incoming rays are reflected to all direction
independently from the incoming direction. The algorithms which use the microfacet model [2,9]
simulate this effect with little, randomly oriented micromirrors called facets. This idea is very useful
to create diffuse or glossy materials while rendering with ray tracing. The 3D programs offer usually
3 alternative ways do define the geometry or the structure of the surface [11]. One way should be
chosen to create these random displacements in order to create diffuse surfaces.

Figure 1. Images generated using local illumination, ray tracing and global illumination methods.

2.2 Defining Structure
Microstructure:
Using the local illumination model an empirical
BRDF - like Phong or Lambert model – is assigned to
every surface. This means that the light reflection
properties of some material due to the microscopic
and atomic structure are simulated by abstract
mathematical formulas. During ray tracing these
illumination models are unimportant in determining
the reflection and refraction directions, thus these
formulas will not be used.

Macrostructure:
The structure of diffuse and glossy surfaces can be
modeled using standard and widespread surface
modeling methods. Either NURBS, polygon or
subdivision surfaces could be used to describe the
geometry of the surface. However, this approach
requires lot of memory - way more than an average
user has - to store even a very simple and rough
estimation of some diffuse surface.

Mesostructure:
To model the visible roughness of a surface bump
maps are used. These require very little memory -
especially when using procedural textures - and are
able to change the reflection and refraction directions
during ray tracing. The main idea of bump maps is
that using the partial derivatives of a standard texture
the normal vector of the surface can be perturbed.
This creates the impression in the viewer as if there
were bumps on the surface. It is the ideal for us to
choose this approach since it is supported in all 3d
graphics packages, it is fast and requires almost no
memory.

2.3 Setting Up the Material Attributes
The only thing that affects the light reflection
properties of the materials is the bump map. The goal
is to create surfaces that can reflect light in every
possible direction. To make a diffuse material based
on the Lambert rule it is necessary that the probability
density of the direction of the reflected ray to be
constant. This means the bump map “rotates” the
normal vector in any direction with the same
probability. If the bump is smoother more rays will be
reflected towards the ideal reflection direction and the

Figure 2: Microstructure

Figure 3: Macrostructure

Figure 4: Mesostructure

material will look glossy. To achieve this effect a very dense, high frequency bump map should be
used since the user does not want to see the actual microscopic structure of the material.
However, there are lots of materials in real life which do not work this way. Satin, velvet and dense
hair have such microscopic structure that the majority of the reflected rays point not toward the ideal
reflection. These non-isotropic structures [2] can be modeled with such bump maps that reproduce
the effect of microscopic features shadowing certain directions or reflecting light to another specific
direction.
The first attempt to define the bump map was to generate textures that would represent a user given
normal vector distribution. This approach has had seriuos disadvantages:

- The repeating texture was noticable on the final rendering.
- If the bump map was scaled very small to avoid the artifact above, the bump simply

disappeared because of the rendering software’s anti-aliasing method [10].
The next approach was to perturb the normal vector with a custom script. This would not work,
however, because even the most advanced 3D applications are not prepared to give this option to the
user.
The way of generating bump maps in the research turned out to be using built in textures. These
textures generate noisy displacements with no visible repetitions. Modifying the gain of the texture
the depth of the bumps could be changed, thus the light reflection properties of the material also
changed. By modifying the texture parameters and rendering test pictures the diffuse or glossy
behavior could be achieved.

Figure 5: Using the same texture with different gain to generate the bump map.

3. Rendering

Using the ray tracing rendering method to define the picture, the program shoots rays from each
pixel to hit a surface. If an object is hit - and no local illumination is used – the color of the current
surface element is calculated using equation (7). Since this process is a recursive one the rays from
the camera do not stop at the first intersection but follow certain paths along the reflections. These
paths will be used – certainly more for each pixel – to calculate the color of the pixel defined by the
rendering equation (1).

3.1 Gathering Walks
As stated above the rays shot from the camera follow a path or gathering walk since they are
reflected at each surface collecting the incoming radiance. Every time one of these rays hits a
surface the “collected” light is the sum of the self illumination and the light from the reflection.
There might be two kind of dangerous situations while rendering:

- The path may not reach any object emitting light. This is because ray tracing is stopped
after certain number of reflection. This threshold number is user defined. To overcome
this situation very large objects were used as light sources.

- If the light emitting objects are also reflective the ray tracing process does not stop until
reaching the threshold number. Because the reflection seen on light sources are usually
not visible non-reflective objects were used to emit light.

3.2 Sampling
Apparently one ray shot from each pixel is not enough. To understand why many gathering walks
should be started from each pixel the common integral formula should be investigated. This is
useful since the goal is to calculate the integral of equation (1).

)()(1)(
1

i
V

n

i
i zszf

n
dzzf ⋅⋅≈∫ ∑

=
(8)

where n is the number of samples, s() is the weight function and iz are the sampling points. In the
actual case the radiance value given by the rendering equation should be estimated for each surface
element hit with a ray. This means the samples will be the values of reflected light rays in different
directions. The more rays are shot from the pixels the more accurate the result will be. If a bump
map defining glossy reflection is applied more rays – samples – will be reflected toward the
direction of the ideal reflection. If the bump defines a diffuse material all samples will have
probably different direction. No gathering walk is more important than the other, thus no weight
function is used:

n

RxhL
xLxL

n

i

ii

e
⋅−

+≈
∑

=1

)),,((
),(),(

ωω
ωω

�

��

 (9)

where n is the number of samples for each pixel and iω− is the reflection direction of the i-th ray. In
this equation the refraction is ignored.

The main question is: what n should be used to achieve good quality? There is no global answer
since the amount of noise seen on the picture and rendering time is in direct proportion to the
number of samples.

3.3

Figure 6: The same scene rendered using 1,3,10,32 and 320 samples for each pixel

3.3 Reducing Noise
The 3D application used [7,10] for the tests let the number of samples to be 32 at maximum which
turned out to be not enough. To overcome this limitation more images should be rendered from the
same scene. If the renderer uses stochastic sampling – and the random generator uses different seeds
for each frame - the starting points of the gathering walks will be at slightly different position.
Averaging these pictures the result will be as if more samples were used for each pixel.
Apparently the user should not rely on the renderer this much since the same result can be achieved
using only one sample for each pixel even if the sampling positions are static. The trick is to
animate the position of the bump texture. Doing this the reflection directions will obviously change
since bump map changed while the probability density of the reflection direction will fortunately not
be affected. The images rendered this way can be averaged together producing the same image as if
it was rendered with a very high number of samples.

4. Conclusions

Using the proposed method global illumination problems can be solved without any major
simplification using standard 3D packages with ray tracing capabilities. The user can define light
emitting objects instead of abstract point light thus generating realistic soft shadows. The specular
and diffuse interreflections can be simulated as well not like while using the renderer the
conventional way. The application of the method does not require any special training or
programming knowledge, any standard – even freeware – renderers can be used.
Unfortunately the generation takes long and the final pictures contain significant noise. To reduce
this artifact the number of samples should be extremely increased causing the computer to render
even longer. This noise makes for most of the cases impossible to use the pictures without any
modification or filtering. However, there are many ways to make use of this process in production
environment. The generated pictures are great visual references for the technical directors how to lit
their scenes using local illumination. It is also useful to filter out the high frequency noise and use
the generated pictures as textures for the objects in the scene.

The subject of future investigation might be the efficient reduction of the noise with some
custom filter or other method. The generation of any microfacet structure would be also useful to
render non-isotropic objects.

5. Acknowledgements

This work has been supported by the National Scientific Research Fund (OTKA ref. No.:T029135).
The test scene with the car has been modelled and rendered by Maya, that was generously donated
by Alias|Wavefront.

6. References

[1] Apodaca, T., Gritz, L.: Advanced Renderman – Creating CG for Motion Picture (chapter 1.),
Morgan Kaufmann, 2000.

[2] Ashikhmin, M., Premoze, S., Shirley, P.: A microfacet-based BRDF generator, in Proceedings
of SIGGRAPH 2000, p. 65-74

[3] Campin, E.: Faking radiosity in Maya (tutorial), www.pixho.com

[4] Glassner, A.: An Introduction to Ray Tracing, Academic Press New York, 1989.

[5] Greenberg, D., Torrance, K., Shirley, P., Arvo, J., Ferwerda, J., Pattanaik, S., Lafortune, E.,
Walter, B., Foo, S., Trumbore, B.: A framework for realistic image synthesis, in Proceedings
of SIGGRAPH 97, p. 477-494

[6] Kajiya, J. T.: The rendering equation, in Proceedings of SIGGRAPH 86, p. 143-150

[7] Pearce, A., Sung, K.: Maya software rendering – a technical overview, Alias|Wavefront, 1998,
www.aw.sgi.com

[8] Szirmay-Kalos, L.: Monte-Carlo Methods in Global Illumination,
http://www.iit.bme.hu/~szirmay/script.pdf

[9] Szirmay-Kalos, L., Kelemen, Cs.: A microfacet based coupled specular-matte BRDF model
with importance sampling, Eurographics Conference, 2001, Short presentations, pp 25-34.

[10] Woo, A.: Aliasing artifacts in Maya – a technical overview, Alias|Wavefront, 1998,
www.aw.sgi.com

[11] Yu, Y.: Image-Based Surface Details (introduction), Course 16 in Course Notes of
SIGGRAPH 2000, p. 1-1.

	Introduction
	The Common Rendering Algorithms
	Local Illumination
	Recursive Ray tracing
	Global Illumination

	“Fake Radiosity"

	Extending Ray tracing
	Creating Diffuse Surfaces
	Defining Structure
	Setting Up the Material Attributes

	Rendering
	Gathering Walks
	Sampling
	3.3 Reducing Noise

	Conclusions
	Acknowledgements
	References

