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Inside, Outside

When building a virtual model of the real world for 
computer graphics applications, we usually represent 
solid objects as polygonal, NURBS, or other types 

of surfaces. This makes the representation, the modeling, and 
the rendering of objects much easier. Yet, there are some in-
teresting questions regarding surfaces when representing 
volumes: Are closed and hole-less surfaces always defining 
3D volumes? Do all surfaces have two sides? Why does our 
favorite modeling application fail at computing the union or 
the intersection of certain objects? And what is the mysterious 
error message regarding manifolds? 

Rigid objects, no matter how thin, always take up some volume 
in 3D space. It is never a good idea to ignore the thickness of even 
the finest sheets or plates, especially if they are made of plastic or 
metal. Our eyes always pick up the highlights on the sharp but still 
round edges—an essential visual sign of thinness. Modeling poly-

gon meshes that do not perfectly encompass a 3D volume may 
also cause headaches at different stages of the pipeline: Automatic 
polygon reduction or collision-detection algorithms likely will fail 
on our model, we won’t be able to use Boolean operations on the 
object, and rendering artifacts may appear on the final images. 

Manifolds
In order to understand the reason why these problems arise, and 
to be able to fix them, we should look at some results of the theory 
of geometric topology. The first concept one should understand 
here is the manifold. Instead of shocking you with some pure 
mathematical definitions, let’s look at the simplest example: the 
one-dimensional manifold. In a one-manifold, every point has a 

neighborhood that looks like a line segment. Thus, a one-dimen-
sional manifold is a curved or straight line, with no discontinuities 
or junctions. Manifolds also can be open (like a curved line) or 
closed (like a circle). 

Two-dimensional manifolds—referring to surfaces in 3D 
space—have a similar definition: In a two-manifold, every point 
has a neighborhood that looks like a continuous disk. That is, the 
surface can be locally deformed into a plane, without tearing it or 
identifying separate points. An example of a closed, two-dimen-
sional manifold would be a sphere, torus, or the Klein bottle. A 
valid two-manifold topology polygon mesh never has edges 
shared by more than two faces (that would be similar to a “T” 
junction). Essentially, two-manifolds are made of a single sheet of 
totally flexible, imaginary fabric. Manifolds are defined by a local 
constraint on the surface. That is good news, as it is very easy to 
check a polygon mesh by simply inspecting every vertex and edge 
for problematic topological configurations.

Orientability  
Closed, two-manifolds seem to be the perfect abstract representa-
tion of boundary surfaces. So, is it fair to say that all meshes with 
such topology are “solid” models? Well, almost. There is one prop-
erty, however, that we need to pay close attention to: orientability. 
In the case of two-manifolds, this property describes whether a 
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surface has two distinct sides. On an orientable surface, it is pos-
sible to paint one side blue and the other side green. Most of us 
would assume that there should be a way to paint the two sides of 
a surface differently. That is not the case. The Möbius strip—de-
scribed by German mathematicians August Ferdinand Möbius 
and Johann Benedict Listing in 1858—is a non-orientable surface 
and has only one side. 

A model of a Möbius strip can be constructed by joining the 
ends of a paper strip with a single half-twist. If you imagine an ant 
walking from the seam down the middle of the strip, it will arrive 
back at the seam, but at the “other side.” Walking farther, the ant 
will reach its starting position again. This single, continuous path 
demonstrates that the Möbius strip has only one side. In 3D mod-
eling and rendering applications, we usually “mark” the visible side 
(mostly the outside) of a polygon face by assigning a normal vector 
to it. While it would be rather easy to model a polygonal Möbius 
strip in any 3D package, we cannot possibly assign vectors to the 
faces so that the normals on neighboring polygon faces point in 
the same direction. 

The Möbius strip has had versatile, practical, 
and symbolical applications, as well. In 1957, 
the BF Goodrich Company (now Goodrich 
Corp.) patented a “turnover” conveyor belt 
system incorporating a half-twisted Möbius 
band. It had the advantage over conven-
tional systems of a longer life span, as both 
sides (actually, the only side) were exposed 
to the same wear and tear. Möbius belts were 
also used in continuous-loop recording tapes 
to double the playing time, as well as in type-
writer ribbons and computer printer cartridges. 
The universally recognized recycle logo, devel-
oped by 23-year-old USC student Gary Anderson 
in 1970, is also based on the Möbius strip. 

  
The Klein Bottle
When modeling solids with triangle meshes, we basically 
divide the 3D space into inside and outside regions. By 
setting the normal vectors—associated with faces or verti-
ces—to point outside, we rely on the fact that such surfaces 
have two sides (so they are orientable). The Möbius strip has 

demonstrated that “open” manifolds are not necessarily orientable. 
But what about closed surfaces? Are there any closed surfaces with 
no distinct inner and outer sides? The answer is, once again, yes.

The Klein bottle, first described in 1882 by the German math-
ematician Felix Klein, is a non-orientable surface with only one 
side. We can construct a Klein bottle (in a mathematical sense, 
because it cannot be done without allowing the surface to intersect 
itself) by joining together the edges of two Möbius strips. Looking 
at the three-dimensional model of the Klein bottle, we immedi-
ately see that the surface is intersecting itself (though in four or 
higher dimensions, this is not the case). This “minor” technical 
detail could not stop fans of geometrical topology from manu-

facturing glass Klein bottles or producing Klein bottle 
hats with matching Möbius scarves (see www.

kleinbottle.com).
In conclusion, polygon meshes of two-man-

ifold topology and with no self-intersection 
do describe solid objects. The easiest way to 
create such a model is simple: Start with a 
valid, basic mesh and use modifications that 
do not break any of the criteria. Box model-
ing is a possible approach: We start by defin-

ing the desired topology on a (very) low poly 
mesh. By subdividing and extruding faces, du-

plicating edge loops, or moving around different 
components, we will not introduce pathological 
(“T” or bow-tie shape) faces breaking the two-

manifold topology. We should be careful, how-
ever, not to introduce self-intersections. 

By strictly following these steps, the result-
ing mesh will have proper normal vector 
orientation. So, hopefully, we will not see 
any rendering problems due to reversed 
faces. Also, we will be able to use Boolean 
operations, such as difference or union. 
And other surface operations, like poly-
gon reduction, will also run smoothly on 

our model. n

Above illustrates the intersection of two volumes, defined by their 
boundary surfaces.

The Klein bottle has no distinct inner or outer sides.


