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0.1 Abstract

Scientists of the field of image processing and machine vision has developed many algo-

rithms to extract useful information from images and image sequences.Camera matching

is one of the most important and well researched problem concerning computer vision.

The main task of camera matching is to calculate the camera parameters – position, orien-

tation and internal parameters of the projection – based on theimage sequencescaptured

by some unknown imaging device. Prior to the evaluation of camera parameters thelens

distortion has to be removed from the images. The camera information is of key im-

portance in computer graphics when integrating 3D elements into live action footage. In

this thesis the theoretical background and the practical use of camera matching and lens

distortion is discussed, while focusing on their aspects concerning computer graphics.

Based on the experiences from the implementation of a lens distortion removing and

applying tool, some improvements of the existing algorithms are proposed. The basic

algorithms of camera matching have been also implemented.
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0.2 Összefoglaĺo

A képfeldolgoźassaĺes ǵepi lát́assal foglalkoźo kutat́ok sźamos algoritmust fejlesztettek

ki különb̈oző információk kinyeŕeśereálló- ill. mozgóképekb̋ol. A kamera illeszt́es az

egyik legfontosabb́es legŕegebben kutatott ilyen probléma. A kamera illesztése soŕan

egy ḱepszekvencia alapján hat́arozzuk meg az eredeti, ismeretlen kamera külső és bels̋o –

orient́ació, poźıció, fókusz t́avolśag stb. – paraḿetereit. A feladat megold́asakor a ḱepen

láthat́o lencsetorźıtást is ki kell k̈usz̈obölni. Az eredeti kameŕaról kinyert információ

nélkülözhetetlen a sźaḿıtógépes grafiḱaval el̋oállı́tott elemek vaĺos felv́etelekbe ẗortén̋o

illeszt́esekor. Dolgozatomban ismertetem a kamera illesztésés a lencse torzı́tás korrekci-

ójának elḿeleti h́atteŕet és gyakorlati alkalmaźaśat, különös tekintettel a sźaḿıtógépes

grafikával kapcsolatos alkalmazásra. A lencsetorzı́tást kezel̋o eszk̈oz fejleszt́ese soŕan

szerzett tapasztalatok alapján javaslatot teszek az ismert módszerek kib̋ov́ıtéśere. Munḱam

részeḱent a kamera illesztés alapvet̋o algoritmusait is implementáltam.
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Chapter 1

Introduction

1.1 Camera matching

Scientists of the field ofimage processingandmachine visionhas developed many algo-

rithms to extract useful information from images and image sequences. The applications

of such results include pattern and face recognition, medical analysis, super resolution

and robot navigation.Camera matchingis one of the most important and well researched

problem concerning machine vision. The main task of camera matching is to calculate

the camera parameters – basically position, orientation and field of view – based on the

image sequences captured by some unknown imaging device. This information might be

useful for example to navigate agents in real or virtual environments.

While image processing deals with existing imagescomputer graphics[SK99] appli-

cations focus on synthesizing new images. In case of 3D graphics virtual photographs

are generated from virtual models, in a way that the resulting pictures look like real

photographs. The quality of these images depend on the plausibility of the rendering

algorithm and the quality of the virtual model. The virtual model – including geometry,

textures, lights, cameras and animation – might be built by modelers or acquired using

some external device. There are many substantially different ways to acquire geometry,

texture and animation. Some of these methods require rather expensive hardware, while

others – like image based solutions – need only some low-end hand held camera.

The combination of image based algorithms like feature tracking, camera matching

1



1.2. THE FOCUS OF THIS THESIS 2

and texture extraction makes it possible to build high quality models, based on some

footage taken by simple camera of real objects or sets (see figures 1.1 to 1.4). These

technologies seem to be the primary tool of model, texture and motion acquisition in

the future, since they do not require any spacial equipment1. In this thesis the theory of

camera matching and it’s current and future use in computer graphics is examined.

1.2 The focus of this thesis

A huge number of papers, books and articles have been published about camera match-

ing algorithms, thus all mathematical problems have been examined thoroughly. In this

thesis a general overview is given about the mathematical background based on the liter-

ature, and the practice of camera matching in computer graphics is introduced. Since the

majority of the camera matching solutions – especially the calibration processes – are ex-

tremely sensitive to the error in the acquired data and to the user’s input on some unknown

camera parameters, many cases they do not provide any useful camera information. The

implemented basic algorithms might serve as a basis for further research to build a robust

camera matcher.

The issue of lens distortion is also discussed in great detail. This rather simple math-

ematical problem causes many trouble to the users of camera matching softwares, since

lens distortion introduces significant error in the reconstruction. However, the proposed

solutions often do not meet the need of the industry utilizing computer graphics and cam-

era matching. In this work a simple way of semi-automatic calibration and a very fast

method for applying distortion is described. A very basic method is also proposed that

helps the integration of CG and real images with distortion.

1.3 Structure of this document

In chapter 2 we look at the related literature of camera matching and give a basic expla-

nation of all the math behind the problem. At first the notation of projective geometry

1Note: Today a low-end video camera is not considered special equipment.
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Figure 1.1: The input of the procedure is an image sequence.

Figure 1.2: Features are detected – points or lines – and matched over image pairs or triplets.

Figure 1.3: Based on the matched tokens the motion of the camera can be calculated. Using

triangulation the 3D position of the tracked features can be evaluated as well.

Figure 1.4: Some algorithms are capable to build 3D textured models based on the recovered

structure. (Images by P. Torr)
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is given, which is used to define the camera model used in computer vision. To find the

unknown parameters of the camera geometric constrains of multiple vision are examined.

The methods to extract the solution from token2 matches and geometric constrains are

also discussed.

In chapter 3 the issue of lens distortion is examined. This harmful effect has to be

removed from the source footage in order to successfully extract the desired data. Detailed

explanation is given about the different lens distortion models and calibration techniques.

In this chapter not only the literature is summarized, but new results are also presented

related to lens distortion. The issue of applying distortion is also discussed, a new, and

very fast method is proposed.

Chapter 4 discusses the practical issues of implementing the algorithms of lens dis-

tortion removal and camera matching. First a short description is given about the im-

plemented lens plug-in and its way of working. A brief description is given about the

commonly used robust token extraction method, and about the fast, non-automatic ex-

ternal tracker used for testing the implemented program. Finally the internal pipe-line is

presented of the implemented camera matching system.

The current use of camera matching for computer graphics is discussed in chapter 5.

Detailed explanation is given about the typical way of working in post production studios

utilizing camera matching softwares for integrating computer graphics into live action

footage. With a real Hollywood example every step of the pipe-line is illustrated.

Lastly in chapter 6 the new researches about the possible future applications are out-

lined. These results might be the basis of further developments of the system. The conclu-

sions and experiments related to the work done are discussed, and at the end the possible

future developments are summarized.

2It is not possible for most of the cases to use every pixel of a digital image in complex calculations. A

token is some identified element or attribute of the picture – like tracked points or lines – which contains

possibly important information. These tokens are used in the calculation, thus the huge amount of data

building up the images does not affect the speed of the algorithms.



Chapter 2

Overview of the problem

2.1 Mathematical representation and notation

The process of finding the unknown camera parameters is usually based on point – or line

– correspondences over multiple images. In order to derive the equations and constraints

used later in the thesis, some mathematical definitions should be given. The framework

to describe 3D points, image points and projections is theprojective geometry. A short

introduction to this field is written by Stan Birchfield [Bir98] while some more detailed

but still tutorial like explanation is given in [HZ00] and in the appendix of [MZ92]. For

a more formal approach refer to [Spr64]. As a general reference for the theory of camera

models and multiple view geometry [HZ00] is strongly recommended.

Projective geometry

Points in the 2D and 3DEuclidean geometryare represented by(x, y)> ∈ R2 and

(x, y, z)> ∈ R3 vectors respectively. In the 2D and 3D projective spaces homoge-

neous vectorsx = (x, y, w)> ∈ P andX = (X, Y, Z, W)> ∈ P are used. To

transform the homogeneous coordinates back to Euclidean the following formulas

should be used:(x, y) = (x/w, y/w) and (x, y, z) = (X/W, Y/W, Z/W). The

points whose fourth homogeneous coordinate is0 are calledideal points.

Lines can be also represented by homogeneous vectors. The 2D lineax + by + c = 

is equivalent to the homogeneous 3-vectorl = (a, b, c)> ∈ P. Note thatl =

5



2.1. MATHEMATICAL REPRESENTATION AND NOTATION 6

(a, b, c)> andl·k = (a · k, b · k, c · k)> represents the same line. Also for vectors of

pointsx = x · k, thus for homogeneous quantities ‘=’ indicates equality always up

to a non-zero scale factor.

It easy to see that in projective geometry the pointx lies on the linel if and only if

x>L = 0. The equation for calculating the intersection of two lines isp = l1 × l2

and the line connecting two points isl = p1 × p2.

3D to 2D camera projection

The transformation of the camera projects the 3D points to the 2D projective plane.

This transformation is described by a3× 4 matrixP on homogeneous vectors:

x = PX (2.1)

wherex is homogeneous 3-vector andX is a homogeneous 4-vector. If the ma-

trix P represents a simple perspective transformation the matrix elements are the

following:

Pperspective =




−f 0 0 0

0 −f 0 0

0 0 1 0




(2.2)

wheref is thefocus distance(see figure 2.1).

p
f

C

Y

Z

f Y / Z

y

Y

x

X

x

p

image plane
camera
centre

Z

principal axis

C

X

Figure 2.1: The principal pointp is at the intersection of the principal axis and the image plane.

The focus distance is the distance between the camera centerC and the image plane. (Image

from [HZ00])
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An arbitrary camera projection matrix looks like this:

P = PinternalPperspectivePexternal =




ku kc u0

0 kv v0

0 0 1







−f 0 0 0

0 −f 0 0

0 0 1 0




[
R t

]

=




αu −αu cot θ u0

0 αv/ sin θ v0

0 0 1




[ I | 0 ]
[

R t

]
= AD (2.3)

whereαu andαv are the scale factors of the image plane,θ is the skew, the point

(u0, v0) is the principal point1, R is the3 × 3 rotation matrix, andt is the3 × 1

translation vector. The matrixA contains the so calledinternal parameterswhile D

contains theexternal parameters. For better understanding, the external parameters

define the 3D position of the camera, while the internal parameters define how the

camera projects the 3D points to the 2D plane. Considering real cameras – like film

or CCD cameras – the external parameters are up to the photographer’s position

and the internal parameters usually depend on only the focus distance. Almost all

cameras have unit aspect ratio2 and no skew.

The main task of camera matching is to recover all the internal and external pa-

rameters of the camera. Where the internal parameters are known the camera is

calledcalibrated camera. In this case only the 3D position of the camera – or the

world’s position relative to the camera – must be recovered from the images. If the

internal parameters are not known the camera may be calibrated in a separate step –

using some special calibration process and a known calibration object. In the field

of robotics this approach has been preferred, since a custom camera rig – or stereo

rig – can be calibrated very accurately. In 1992 it was shown in [Fau92] that using

1The principal plane is the plane through the camera center parallel to the image plane. The principal

axis is the line passing through the camera center, with direction perpendicular to the principal plane. The

principal point is the image point of the intersection of the principal line and the image plane. This is usually

in the center of the image.
2Which means the pixels are squared pixels and no anamorphic lens is used. If this is not the case the

images should be corrected manually prior to camera matching.
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uncalibrated camera – where the internal parameters are not known – theEuclidean

3D reconstruction of the points is not possible. This means that based on arbitrary

uncalibrated views only projective reconstruction is possible (See figure 2.3).

Later, in 1992 it has been also proposed in [Har92] that the calibration of the focal

lengths – which is in most of the cases the only changing internal parameter of the

camera – can be done based on only the point correspondences which is calledself

calibration. Using this method the Euclidean reconstruction is possible.

Essential matrix

The information about the internal and external parameters of the camera cannot

be extracted from single images with unknown structure3. Using two or more im-

ages the self-calibration and the 3D reconstruction is possible. Most algorithms are

based on correspondences of two images recorded from slightly different positions,

these images are calledstereo images. The first attempt to make use of such stereo

images was in 1981 [LH81]. Based on a set of image correspondences the relative

placement (external parameters) and the focal lengths (the major internal param-

eter) can be derived of the two cameras, and that is all the information we may

deduce [Har92].

Suppose we have two pictures taken from different positions from the 3D pointM ,

and it projects onto the two image planes atm1 andm2. If we suppose the camera

is calibrated the pointsm1 andm2 are given with respect to the camera’s coordi-

nate frame, and the projection matrix of the camera consists of only the rotational

and translational elements. The mathematical relationship between the two image

points is expressed by theepipolar constraint. It says that the vector from the first

camera’s optical center to the first imaged point, the vector from the second optical

center to the second imaged point, and the vector from the optical center to the other

are coplanar (figure 2.2).

This relationship can be expressed by the following formula:

3Unknown structure means we have no information about the geometry of the recorded scene.
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Figure 2.2: The epipolar constraint.

m2
T (t×Rm1) = 0 (2.4)

whereR and t capture the rotation and translation between the two camera’s co-

ordinate frames. If we do not use the notationt = [ a b c ]T but define the matrix

T =




0 −c b

c 0 −a

−b a 0




the equation 2.4 turns out to be simpler:

m2
T (TRm1) = m2

T Em1 = 0 (2.5)

The matrixE = TR is called theessential matrix[FLM92] [Zha96]. If we find the

essential matrix five parameters can be derived: three for the rotation and two for

the direction of translation4. The essential matrix has two constraints:

1. the determinant has to be zero, thus the matrix is singular

2. its two non-zero singular values has to be equal.

4The magnitude cannot be recovered due to the depth/speed ambiguity
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Fundamental matrix

The fundamental matrix describes the geometric relationship between the matching

image points, however, it deals with uncalibrated cameras as well. The internal

parameters of the two cameras are stored in the matricesA1 andA2 (equation 2.3).

Transforming the pointsm1 andm2 with these matrices we getm1 andm2:

m1 = A1m1

m2 = A2m2

The epipolar constraint is valid for the pointsm1 andm2 just like in the calibrated

case (equation 2.4), since we compensated for the internal parameters. This yields

the following equation:

(A2
−1m2)

T (t×RA1
−1m1) = 0

m2
T A2

T (t×RA1
−1m1) = 0 (2.6)

m2
T Fm1 = 0 (2.7)

The matrixF = A2
−T EA1

−1 is called thefundamental matrix[LF96]. F has 7

degrees of freedom and is a rank two matrix, thus it has two non-zero singular

values. The 7 degrees of freedom is enough for deriving the 5 parameters of the

relative translation and rotation, while the two extra parameters help to find the

focal lengths5 of the two cameras [Har92]. These are the only parameters that can

be extracted from the fundamental matrix.

Trifocal tensor

If more than two views are considered even more complex constrains can be de-

fined for point and line correspondences [BP] [FM95]. However, the use of more

than three images is computationally too intensive. The constrain for matching

points and lines of three images, orimage tripletsis called thetrifocal tensorTijk

[PBZ96]. This3 × 3 × 3 homogeneous tensor encapsulates the trilinear relations

5This is true only if there is no skew and the aspect ratio is one over all images.
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for corresponding points and lines in three images. Using the tensor a point can be

transfered to a third image from correspondences in the first and the second:

x′′l = x′i
k=3∑

k=1

xkTkjl−x′j
k=∑

k=

xkTkil

for all i, j = 1...3. Similarly, a line can be transferred as

li =
j=3∑

j=1

k=3∑

k=1

l′jl
′′
kTijk

ie. the same tensor can be used for transfering both lines and points.

2.2 Finding the fundamental matrix

finding) In order to implement a fast camera matching algorithm – and for the sake of sim-

plicity – the aim of this thesis is not to find the trifocal tensor but the fundamental matrix.

There are several different approaches to calculate the fundamental matrices based on a

set of point matches [HZ00]. The definition of the fundamental matrix is the following:

x′ F x = 0 (2.8)

wherex = (x, y, )T andx′ = (x′, y′, )T are the matching points. Each point match

give rise to one linear equation in the unknown entries ofF. Specifically, the equation

corresponding to a pair of points(x, y, 1) and(x′, y′, 1) is

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0 (2.9)

From a set ofn point correspondences, we obtain a set of linear equations in the form:

Af =




x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1




f = 0 (2.10)

This is a homogeneous set of equations, thusf can only be determined up to scale. If the

rank ofA is exactly 8 there is one unique solution (up to scale).
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If the data is not exact – which isalwaysthe case in real applications for computer

graphics – the rank ofA might be 9. In this case one finds a least-squares solution forf,

which can be obtained by thesingular value decomposition(SVD) of A. The SVD of a

generalM ×N matrixM is:

M = U




s1

s2

...

sN




V T (2.11)

The elements of the diagonal matrix are thesingular values, for whichs1 ≥ s2 ≥ . . . ≥
sN , U is aM×N column-orthogonal matrix andV is the transpose of aN×N orthogonal

matrix. The details of the mathematics concerning the SVD is out of the scope of this

thesis, for further discussion refer to [WPF92] where the implementation of the algorithm

is also presented in C.

The least-squares solution forf is the singular vector corresponding to the smallest

singular value ofA. That is, thelast column ofV in the SVD decompositionA = UDVT.

The solution vector found in this way minimizes‖Af‖, which is our goal (see equation

2.10). The fundamental matrix can be built from the vectorf:

F =




f11 f12 f13

f21 f22 f23

f31 f32 f33




(2.12)

This mathematical tool is the essence of the most basic and well known procedure called

normalized 8-point algorithmproposed in 1981 [LH81] to compute the fundamental ma-

trix.

2.2.1 The normalized 8-point algorithm

The key to success with the normalized 8-point algorithm – which is based on the singular

value decomposition of the matrix built based on equation 2.10 – is proper normalization

of the input data before constructing the equations. The suggested normalization is a very

simple transformation:
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- The image has to be translated so that the centroid of the considered points is at the

origin.

- The image has to be scaled so that the RMS distance of the points from the origin

is equal to
√

2.

This simple transformation of the points in the image before formulating the linear

equations leads to a enormous improvement in the conditioning of the problem, thus the

result will be much more stable. The added complexity of the algorithm is insignificant.

An important property of the fundamental matrix is that it is singular – in fact of rank

2 – and most applications based on the fundamental matrix rely on this fact, as well.

However, the matrixF found by the SVD described above will not in general have rank

2, thus it has to be corrected6. The simplest way to enforce singularity is to use the

SVD (again). In particular, letF = UDVT be the SVD ofF, whereD is the matrix

diag(s, s, s) satisfyings1 ≥ s2 ≥ s3. ThenF′ = U diag(s1, s2, 0) VT is a good

solution, since it minimizes the Frobenius norm‖F− F′‖.
The steps of the normalized 8-point algorithm:

1. Normalization

Transform the image coordinates according tox̂i = T xi andx̂′i = T′ x′i, whereT

andT′ are the normalizing transformations consisting of translation and scaling.

2. Linear solution

DetermineF̂ from the singular vector corresponding to the smallest singular value

of Â (using the SVD), wherêA is composed from the matchesx̂i ↔ x̂′i as defined

in 2.10.

3. Correction

ReplaceF̂ by F̂′ such thatdetF̂′ = 0 using the SVD again and zeroing out the

6Note that all the algorithms described here to compute the fundamental matrix differ only in the way of

this correction of enforcing singularity. The initial estimate ofF based on the SVD is the first step of every

algorithm. The only difference is how sophisticatedly the correction is done.
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smallest singular value.7.

4. Denormalization

SetF = T′T F̂′ T to compensate the normalization. MatrixF is the fundamental

matrix corresponding to the original dataxi ↔ x′i.

2.2.2 The algebraic minimization algorithm

Although the normalized 8-point algorithm is very fast and rapid, it is numerically not

optimal, since the entries ofF have not equal importance in the relationship between

corresponding points, which is not considered in the algorithm. This means that there

might be aF′ matrix that is singular just likeF computed by the normalized 8-point

algorithm, but is a better solution:‖Af ′‖ < ‖Af‖. The algebraic minimization algorithm

tries to find thissingular F′ matrix while minimizing‖Af ′‖ during an iterative process.

For more details refer to the literature, for example [HZ00].

2.2.3 The Gold Standard method

The Gold Standard method is one of the most sophisticated algorithms to find the funda-

mental matrix, since it uses a more complex error model, which fits better the problem.

It tries to find the Maximum Likelihood estimate of the fundamental matrix, assuming

Gaussian distribution of the noise in image point measurements. In this case the ML

estimate is the one that minimizes the geometric distance :

∑

i

d(xi, x̂i)
2 + d(x′i, x̂

′
i)

2 (2.13)

wherexi ↔ x′i are the measured correspondences, andx̂i ↔ x̂′i are estimated “true”

correspondences satisfyinĝx′i F x̂i = 0. The process of the Gold Standard algorithm

starts with an initial estimate of the fundamental matrixF̂ using the normalized 8-point

algorithm. The second step is the initial estimation of{x̂i, x̂
′
i} based on̂F and using the

triangulation method to determine the estimated 3D position of the pointX̂i corresponding

7Note that this SVD is not the same as in the previous step. Step number 2 used the SVD of ak × 9

matrix, wherek ≥ 8, while this step generates the SVD ofF̂, which is a3× 3 matrix
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to xi. Then the cost function 2.13 should be minimized overF̂ andX̂i, i = 1, . . . , n using

the Levenberg-Marquart algorithm [WPF92]. Note that we not only find the fundamental

matrix, but the 3D position of the points as well. However, this reconstruction is only a

projective reconstruction, since no calibration is done. The Gold Standard algorithm is

recommended by most of the literature, however this method requires the most effort in

implementation.

2.3 Extracting external camera parameters from the

fundamental matrix

The external parameters of the camera model are easily deduced from the fundamental

matrix. However, a given fundamental matrix defines a pair of camera matrices up to right

multiplication by a projective transformation. This means that using only a fundamental

matrix while not knowing anything about the internal camera parameters the Euclidean

reconstruction of the camera motion – which is necessary to match the virtual camera

defined in Euclidean coordinates to the original one – is not possible [FLM92] [RH92].

Given this ambiguity, it is common to define a so calledcanonical formfor the pair of

camera matrices corresponding to a given fundamental matrix. In canonical form the first

camera matrix has always the simple formP = [ I | 0 ], where[ I ] is the3 × 3 identity

matrix and0 is a null 3-vector, while the second camera matrix has the formP′ = [ A | a ].

It is always possible to do, because ifP is augmented by one row to to make a4× 4 non-

singular matrixP∗ and lettingH = P∗−1, one verifies thatPH = [ I | 0 ] as desired.

While a pair of camera matrices determine a unique fundamental matrix, this map-

ping is not injective as stated before. Pairs of camera matrices that differ by a projective

transformation give rise to thesamefundamental matrix. Given a fundamental matrixF

the canonical matrices of the cameras may be chosen as [HZ00]:

P = [ I | 0 ] (2.14)
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Figure 2.3: The projective reconstruction does not fit the need of computer graphics applications.

The reconstructed 3D geometries (corners) are not similar to the original one (center).

and

P′ = [ [ e′ ]× F + e′ vT | λ e′ ] (2.15)

where

[ e′ ]× =




0 −e′3 e′2

e′3 0 −e′1

−e′2 e′1 0




(2.16)

ande′ is the epipole such thate′ T F = 0, v is any 3-vector, andλ is a non-zero scalar.

This kind of reconstruction of camera matrices is not really useful in our case, since the

projective reconstruction is not enough for camera matching.

2.4 Extracting internal camera parameters

The process of finding the internal parameters of the cameras is called calibration. It was

shown in [FLM92] that this can be achieved based on only images of unknown structure,
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if we have some constraints on the camera parameters. Usually these constraints are: unit

aspect ratio and known principal point. This kind of calibration is called self-calibration

or auto-calibration. In this thesis off-line calibration is not considered, since almost all of

the applications in computer graphics deal with hand held cameras with no information

for calibration. Since the initial publication of Faugeras et. al. many algorithms have been

proposed. In [Har93] a non-iterative solution – using singular value decomposition – was

given to find the focal lengths, while later a simple, closed-form formula was proposed in

[Bou98]:

f 2
2 = −(pT

1 [e1]× I FT p2)(p
T
1 FT p2)

pT
1 ([e1]× I FT I F) p1

(2.17)

where I is the diagonal matrix diag(1,1,0). A similar formula for the focal length of

the first cameraf 2
1 os obtained by interchanging the roles of the two images. In the

implementation related to this thesis the procedure of [KM00] is used, since it introduces

a closed-form expression for finding the focal lengths fromonly the fundamental matrix.

This procedure is not described here, since it produces the exact same solution as the

Bougnoux formula while it is not as compact. All of the methods that extract the focal

length from only the fundamental matrix have various deficiencies as shown in [HSA02]:

1. Computation of the focal lengths is not possible in case of some degenerate config-

urations. This means, if the camera moves in a certain way the reconstruction is not

possible.

2. The algorithms require the position of the principal point to be known. Furthermore,

the computation of the focal lengths can be very sensitive to the assumed positions

of the principal points, and also to the fundamental matrix.

3. In some cases the algorithms fail completely, because the value of the focal length

turns out to be negative. In this case the fundamental matrix may be incompatible

with any reasonable choice of the principal point.

Researches have shown that the sensitivity of the computation of the focal length

based on the fundamental matrix and a guessed principal point position is so severe that
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the algorithm is of doubtful practical value.

Successful auto calibration algorithms use the previous formulas for the initial esti-

mate of the internal parameters, and find a much more reliable solution with some iterative

process like in [HSA02].

2.5 Rebuilding camera motion

If we have the internal calibration data – focal length, principal point position – and the

fundamental matrix, the camera matrices may be retrieved up to scale ambiguity. This

way the relative motion of the second camera can be deduced. If we haveF , f , f ′, px

andpy determined8 the essential matrix can be calculated. The fundamental matrix and

essential matrix are related in the following way:

E = K′T F K (2.18)

whereK andK′ are the calibration matrices:

K =




f 0 px

0 f py

0 0 1




K′ =




f ′ 0 px

0 f ′ py

0 0 1




(2.19)

The essential matrix is a3× 3 matrix with one zero and two identical singular values. In

other words the essential matrix can be factored in the following way:

E = U diag(1, 1, 0) VT (2.20)

Using the canonical form of the camerasP = [ I | 0 ] andP′ = [ R | t ], the matrix

R and the vectort must be recovered. Later it will be shown, that the matrixR can be

converted to RPY rotational parameters. Using the factorization of 2.20 there are four

solutions based on the essential matrix[HZ00]:

8We suppose all images are taken with the same camera, thus the principal point is the same for all

images.
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P′ = [ U W VT | + u3 ] (2.21)

or

P′ = [ U W VT | − u3 ] (2.22)

or

P′ = [ U WT VT | + u3 ] (2.23)

or

P′ = [ U WT VT | − u3 ] (2.24)

where

W =




0 −1 0

1 0 0

0 0 1




(2.25)

andu3 is the column ofU corresponding to the zero singular value, which is the last col-

umn using the decomposition of 2.20. The geometrical interpretation of the four solutions

is very simple. Since the fundamental matrixF is determined only up to scale, its sign is

indeterminate. Also, the vectort can be determined only up to sign. Hence, there exists

four solutions depending on the choice of the signs of±E and±t. This indeterminacy

is due to the fact that the mathematical expression for perspective projection is the same

if the object isbehindthe camera. The four solution correspond to the four possible con-

figurations of the relative positions of the object and the two cameras. We have to choose

the one for which the object is in front of both cameras (see figure 2.5).

If we want to export the camera motion to an external 3D software the3×3 rotational

matrix is not sufficient. We have to find the 3 RPY rotational angles of roll, pitch and

yaw, which is the common way to define orientation (see figure 2.6):

R = RPY(α, β, γ) = Rot(z, α)Rot(y′, β)Rot(x′′, γ) =
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Figure 2.4: Suppose we have these two images taken from the same object.

Figure 2.5: There are four camera set-ups, that correspond to the images. Note that there is only

one solution, when all 3D points lie in front of both cameras.
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=




Cα −Sα 0

Sα Cα 0

0 0 1







Cβ 0 Sβ

0 1 0

−Sβ 0 Cβ







1 0 0

0 Cγ −Sγ

0 Sγ Cγ




=

=




CαCβ CαSβSγ − SαCγ CαSβCγ + SαSγ

SαCβ SαSβSγ + CαCγ SαSβCγ − CαSγ

−Sβ CβSγ CβCγ




(2.26)

whereα, β, γ are the angles we are looking for, andC andS denote the cosine and sine

functions. We have to solve the equation 2.27 to getα, β, γ.

RPY(α, β, γ) =




R11 R12 R13

R21 R22 R23

R31 R32 R33




(2.27)

Figure 2.6: The RPY angles describe orientation and can drive the virtual camera of the 3D

softwares.
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The result of the equations 2.27 are the following [Lan91]:

1. If R11 = R21 = 0 thenCβ = 0. There is two possibility:

(a) If R31 = −Sβ = 1 thenβ = −π/2, and

α + γ = arctan

(
R

R

)
+





0

π

−π





(2.28)

(b) If R31 = −Sβ = −1 thenβ = π/2, and

γ − α = arctan
(

R

R

)
+





0

π

−π





(2.29)

2. If R2
11 + R2

21 6= 0 thenCβ 6= 0. In this case:

α = arctan
(

R

R

)
+





0

π

−π




∈ (−π, π) (2.30)

β = arctan
( −R

SαR + CαR

)
(2.31)

γ = arctan
(

SαR − CαR

−SαR + CαR

)
(2.32)

Note that in some special cases only sum (or the difference) of two angles can be

determined. In those cases there is basically two options:

• Set always one of the angles to 0 and the other to the total sum.

• If we have the previous values of the angles there is another option. For example if

α + β = x and we knowαold + βold = xold then

α := αold +
x− xold



β := βold +
x− xold


(2.33)

might be a good choice.



Chapter 3

Lens distortion

3.1 What is lens distortion?

The camera model described in chapter 2 realizes apinehole camerawhich projects the

straight lines of 3D space to straight lines on the image. If the imaging device used

to record the images has some significant non-linear lens distortion, the geometric con-

straints – in this case the fundamental matrix – will not hold. If this distortion is not

corrected the elements of the fundamental matrix will be erroneous, thus the solution

might differ from the desired data. The most prevalent form of lens distortion is thebar-

rel and thepincushiondistortion. The first is due to the fact that many wide angle lenses

have higher magnification in the image center than at the periphery. This causes the image

edges to shrink around the center and form a shape of a barrel. The pincushion distortion

is the inverse effect, when the edges are magnified stronger (see figure 3.1).

Figure 3.1: The original grid and the effect of barrel (center) and pincushion distortion (right).

23
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Figure 3.2: Using wide angle lenses recognizable lens distortion occurs. Straight lines become

curved.

Figure 3.3: Good quality and narrow angle lenses realize correct projection, straight lines

remain straight.
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The simplest way to model lens distortion is with a shift to the image coordinates. Let

q = (u v)T denote the undistorted image coordinates, whileq = (u v)T represents the

observed coordinates. Any radial – symmetric – lens distortion can be approximated with

it’s Taylor expansion [Ste95]:

q = fd(q) =




u

v


 (1 + K1r

2 + K2r
4 + . . .) (3.1)

wherer2 = u2 + v2 and K1, K2, . . . are the radial distortion coefficients. In this

relation theu, u, v andv coordinates should be not pixel coordinates, since in that case

the same image with different resolution would have different coefficients. The image

coordinates for the calculations will bedimensionless coordinateswhich are calculated

by 3.2.

u =
upix − cu

R

v =
vpix − cv

R
(3.2)

whereupix andvpix are the pixel coordinates,cv andcv shift the center of the image to

(0, 0), andR is the diagonal radius of the imageR =
√

(upixmax

2
)2 + (vpixmax

2
)2.

There are many different formulas modelling radial lens distortion. The simplest

model is based on 3.1:

fd(q) =




u

v


 (1 + K1r

2) (3.3)

which is a formula with single parameter and manages most of the regular distortions.

However, there are some other formulas proposed with one parameter to handle very

wide angle lenses, calledfisheye lensesas well [DF01] [AB95] [PK02]. If more than one

coefficient are considered of equation 3.1 we get formulas with two or more parameters

applicable for more kinds of radial distortions.
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fd(q) =




u

v


 (1 + K1r

2 + K2r
4) (3.4)

3.2 Removing lens distortion

The formula 3.5 used in this thesis is a “production-proven” model, it is currently used in

a commercial software package [Sas01]. It is based on the classical distortion model with

second order and quartic term (equation 3.4) to handle fisheye lenses, but is not symmetric

to work withanamorphic lensesas well.




u

v


 = g




u

v


 =




u(1 + cxxx
2 + cxyy

2 + q
ε
(x2 + y2)2)

v(1 + cyxx
2 + cyyy

2 + q(x2 + y2)2)


 (3.5)

where

cxx =
δ

ε

cxy =
δ + ηu

ε

cyx = δ + ηv

cyy = δ

(3.6)

based on the 5 input parameters:

δ = primary distortion (default 0)

q = quartic distortion (default 0)

ε = anamorphic squeeze (default 1)

ηu = curvature in theu direction (default 0)

ηv = curvature in thev direction (default 0)

The equation 3.5 should be evaluated for every pixel on the image to find “source”

position of the displaced pixel. All the calculations are in dimensionless coordinates,

thus the solution transformed back to pixel coordinates gives a very precise sub-pixel
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coordinate. In the implemented system bicubic interpolation is used to build the final

pixels of the image.

3.3 Applying lens distortion

In computer graphics camera matching is often used to insert computer generated ele-

ments into real footage. The pipeline of such effect starts with removing lens distortion

from the original plates. After successfully matching the virtual camera to the real one

the rendering of the CG images is possible. During the final step the graphics is not

inserted into the undistorted footage, but thedistortedgraphics is composited into the

orginal plates. The reason of this procedure is that the computer generated images can be

rendered at higher resolution (super resolution), while the original footage should be used

at the best (original) quality.

To apply lens distortion – at high quality1 – the inverse mappingg−1 of 3.5 and 3.6

should be found. Since there is no analytic expression of this inverse transformation a

numerical algorithm should be used. In the current implementationNewton’s method

was used [WPF92]. The basic goal is to find the distorted(u, v)T coordinates of the

undistorted(u, v)T coordinates. We know:




u

v


 = g




u

v


 (3.7)

The iterative algorithm to find(u, v)T is:




u

v




(j+1)

=




u

v




(j)

−
(

∂g((u, v)(j))

∂((u, v)(j))

)−1


g




u

v




(j)

−



u

v





 (3.8)

The success and quality of the solution of this method depends basically on two things:

the number of maximum steps and the initial guess. The latter(u, v)(0)T used in [Sas01]

was the first iteration of 3.7, but after testing it it turned out, that with extreme input values

it fails to converge. Based on extensive tests the image center(0, 0) turned out to be the

1There is a much faster algorithm discussed later with not that good quality
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best choice of initial guess. With non-extreme cases it makes the algorithm a little bit

slower, but it converges always. The maximum step number at 5 was enough for most of

the cases but for the sake of accuracy 30 was set in the final implementation.

3.4 Apply distortion fast

Both the previously described removing and applying methods worked like the code be-

low:

for all (x,y) pixels%

{

(u,v)=dimensionless_coordinate_of(x,y)

(u_res,v_res)=apply_distortion(u,v)

(x_res,y_res)=back_to_pixel_coordinate(u_res,v_res)

result_color(x,y)=source_color(x_res,y_res)

}

This method calculates for each pixel in the result image an exact position – at sub-

pixel accuracy – on the source image, where it’s color should be sampled. If this source

position is exactly the pixel’s own position nothing happens. But if the input parameters

are set to some arbitrary value, the pixels will be displaced according to the lens distortion

model. The Newton iteration runs for each pixel only once – if the parameters are not

animated – if we store the results in a displacement buffer.

To apply distortion very fast – and avoid using the slow Newton iteration – a different

kind of approach can be used. If we do not require sub-pixel accuracy it is possible to

shift the pixels according to 3.5, and get the effect of the inverse transformation. In this

case the pseudo-code of the program looks like this

for all (x,y) pixels%

{

(u,v)=dimensionless_coordinate_of(x,y)

(u_res,v_res)=remove_distortion(u,v)

(x_res,y_res)=back_to_pixel_coordinate(u_res,v_res)

result_color(x_res,y_res)=source_color(x,y)

}
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This version goes over all pixels in the original image and shifts the pixel to the re-

quired position. This algorithm produces not very good quality results, since some pixels

map to the same position while some pixels remain “empty” in the final image. To avoid

such empty pixels a cheap trick can be used: if no pixel from the original image shifts to

a certain pixel position – eg. it remains empty – we should check it’s neighboring pixels

and average their color. Using this method the application of lens distortion is extremely

fast, while the quality is enough only for previewing. See results on figure 3.4.

Figure 3.4: Using the fast apply algorithm the pixels are displaced, thus near the edges of the

image black lines may occur. On the right image the “empty” pixels are filled based on

neighbors. This algorithm is very fast.

3.5 Automatic calibration

It is very uncomfortable and also inaccurate to set the lens distortion parameters by hand.

There are several different methods to calibrate these attributes automatically. Some of

the proposed methods require an image of acalibrating grid or reference objectof known

structure [Zha00] [BB01] [Bai03]. In the production environment these reference images

are rarely present.

The newer methods do not require any reference images. Most of the calibration meth-

ods search the distortion parameters and the camera parameters – internal and external –
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Figure 3.5: Calculation with Newton iteration. On the left image there is no interpolation, the

right was generated using bicubic interpolation.

in a separate step. These algorithms use some constraint or error function to successfully

find the best parameters to remove distortion. These constraints include:

• Straight lines in the scene should remain straight on the final, undistorted image.

The error is proportional to this kind of deviation. This algorithm is usually referred

as theplumb linemethod [DF01] [RV02].

• Circles should remain circles (usually needs some calibrating pattern containing a

circle).

• Lens distortion introduces specific higher-order correlations in the frequency do-

main. These correlations can be detected using tools from polyspectral analy-

sis. The amount of distortion is then estimated by minimizing these correlations.

[HF01]

Some of the most recently proposed algorithms find the lens distortion and all the

camera parameters in one step [Ste97] [Fit01]. These methods use some simple distor-

tion model, thus they often cannot handle fisheye or anamorphic lenses. This is why in

this thesis a more sophisticated distortion model and only semi-automatic calibration al-

gorithm is used based on straightening lines. The user has to define lines on the image

with several points which are supposed to be straight. The algorithm tries to calibrate one
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parameter at a time with a very simple algorithm. The pseudo code of the calibration of

the parameter called “param” is as follows:

stepsize=0.1

while(!good)%

{

error_minus=test_with(param-stepsize)

error_here=test_with(param)

error_plus=test_with(param+stepsize)

if(error_here is smallest){stepsize/=2}

if(error_minus is smallest){param-=stepsize}

if(error_plus is smallest){param+=stepsize}

if(stepsize<threshold) good=TRUE

}

The “testwith” function displaces the points of the lines according to the current dis-

tortion parameters and calculates the error2. This rather simple method assumes the error

function not to have local minima, which is obviously the case3. The automatic calibration

in the implemented version searches for the primary and the quartic distortion parameters

(one after another several times). The algorithm – despite its simpleness – has worked

well for every test we made.

2The error is the summed squared distance of the inner points of the lines from the line connecting the

first and the last points.

3It is not possible that the lines become more curved as the parameters approach the ideal set up.
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Figure 3.6: The user has to draw lines which should be straight.

Figure 3.7: The parameters are automatically calibrated and the lines become straight.



Chapter 4

Implementation issues

The software solutions for lens distortion and for camera matching were implemented

separately. The first is a plug-in for the image processing and grading system calledLus-

tre1 , while the latter is a stand alone “command line” application with no graphical user

interface (GUI). For testing the data of the tracked points were exported from different

softwares: a 3D software called Maya was used to generate “perfect” data, while the

tracker of Lustre was used to acquire somewhat noisy, measured data.

4.1 Lens distortion plug-In

The plug-in API of Lustre allowed to simply generate GUI elements – push buttons,

sliders, radio buttons, labels – and use the image sequence saving/loading capability of

the software. All input user interface elements are animatable. Basically the plug-in

works on two image buffers provided by the API, one for the input and one for the output.

The plug-in has to set the pixel values in the output buffer, based on it’s calculations.

Since it would be a major waste of processing time to calculate the displacement vectors

for every pixel on every frame, the plug-in allocates for itself a 32 bit buffer to store

these vectors. Dimensionless coordinates are used to describe the vectors at sub-pixel

accuracy. This buffer stores the output of either the removing or the applying method,

1Lustre is a product of the software company Discreet, and is developed by Colorfront Ltd. For more

details refer to www.discreet.com and www.colorfront.com
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thus the rendering of an image sequence does not require the recalculation at every frame

(see figure 4.1). It would be certainly very slow, especially the Newton iteration. For each

pixel of the output buffer the displacement vector defines a sample position on the source

(input) image, where the color information should be read from. This color is calculated

with either bicubic interpolation or based on the nearest neighbor.

Figure 4.1: Every pixel of the final image is sampled from the source image based on a 32bit

buffer of displacement vectors.

All the input parameters of the distortion model and the image parameters can be set

by sliders: primary distortion, quartic distortion, anamorphic squeeze, curvature x and y,

center x and y of the image (see figure 4.2). However, the user can also define up to 10

lines – consisting maximum 10 points – on the screen, which are supposed to be straight,

for automatic calibration. The plug-in sets the primary and the quartic distortion based on

these lines.

The automatic calibration is an extremely simple algorithm, still it worked 100% fine.
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Figure 4.2: The user interface of the lens distortion plug-in.
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The search for the primary and the secondary parameters was realized in two separated

loops following each other (see figure 4.4). The loops are run until the error reaches a

minimum threshold. The primary value is evaluated first, and then the secondary. It is

interesting, that the model almost never got to change the secondary distortion parameter,

since by setting the first one the lines have become straight. This means that the search

was done in most of the cases in one loop. This proves that the mathematical model is

sufficient, and the simpler form of the model – involving only one parameter – certainly

would be fine for most of the materials in a post production studio.

start

local
minimum?

yes

no

min threshold
reached?

yes
done

step

no

decrease
step size

Figure 4.3: The search loop for one distortion parameter.

The loop starts with initial distortion values and the step size set to default. The test

for local minimum calculates the error in the positive and negative directions at a distance

of the step size. The error is the deviation of the lines from straight. If in the positive or

negative direction the error is smaller, the algorithm does a step in that direction. If local

minimum is reached the step size is set finer. The initial value of the step size was 0.1

while the minimum threshold of the step size was 0.0001. Each level the step size was

divided by 4. The algorithm always converged very fast, since this problem has no other
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local minimums than the solution. It is not possible that the lines become more curved

while setting the lens distortion values closer to the desired numbers.

As mentioned in the previous section it is sometimes necessary to apply distortion to a

images with extra border. This means that instead of just applying distortion to the image,

we generate a larger version, apply distortion a special way to this large image, and finally

crop the inner part to the original size. The resulting image should be distorted the same

way the normal image would, and there will be no gaps. An example is shown in figure??:

Let us suppose digital background has to be inserted into video images. The lens distortion

parameters are acquired from the video-sized source. The distorted computer generated

grass field – if rendered at regular size – cannot be put in the background because of

the visible black area. If larger images are rendered and the application of distortion is

handled correctly –not the regular way – the cropped result will fit perfectly into the

background.

Figure 4.4: Computer generated background (in this case a grass field) should be rendered at

larger size to avoid black gaps.
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This problem was solved by introducing a new parameter called “scale factor”. This

parameter alters the way the pixel coordinates are transformed to dimensionless coordi-

nates. If it is set to 1 no change is made. If the parameter is set to 1.2 – meaning the image

is rendered at size 120% – the pixel coordinates are transformed in a way, that diagonal

image radius is 1.2 instead of 1. This means that the central window corresponding to

100% will have coordinates as if the it was rendered at regular size. The details of this

method will be published at the Budapest conference on Computer Graphics and Geom-

etry 2003.

4.2 Track data

There was no algorithms implemented for feature extraction, external tools were used to

generate the data of token matching. For the initial testing “perfect” data was needed

to verify, that the algorithm works correctly. A 3D software called Maya was used to

build a simple 3D environment and a moving camera. Some 3D points were identified

with “locators”, and the screen space positions of these points – calculated based on the

camera position and projection parameters – were exported to a text file. These(x, y)

positions were more than 4 digit precise, which enabled a very exact reconstruction. After

the camera matching software worked well with perfect, calculated data, the testing with

acquired data begun.

Some of the camera matching algorithms based on token matching extract tokens from

the images independently [PBZ96], and then match them over image pairs or triplets while

building the fundamental matrix or the trifocal tensor robustly. This robustness means that

mismatched tokens and small, moving objects in the scene – that are obviously not com-

patible with the constraints of the fundamental matrix – called outliers [Tor95] are filtered

out using some robust estimator like RANSAC2. The use of these robust estimators is

rather slow, since they calculate the fundamental matrix several times for each frame.

The approach followed in this thesis was to track feature-points over the image se-

2RANSAC stands for RANdom SAmple Consensus algorithm proposed in [FB81]. A detailed descrip-

tion is also in [HZ00].
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Figure 4.5: The tracker used to test the implemented program was a very fast point-tracker, while

other commercial camera matcher softwares track automatically hundreds of points.

quence, thus generate point matches rather fast. However, if there is a moving object in

the scene, and some trackers are attached to it, the solution of the fundamental matrix can

be useless. Right now it is up to the user to track only points of the static scene. The

current version of Lustre tracks user defined points identified by their surrounding region

of some specified radius. The algorithm tries to find this region in the search area that is

similar to the tracked region on the previous image. If the “look” of the tracked feature

slightly changes over time the tracker adjusts itself. Since the tracking algorithm is ex-

tremely fast – real time – it is easy to track many features in the sequence. The image

coordinates of the tracked points are exported to a text file, which is later processed with

the stand alone camera matcher.

4.3 The camera matcher

The camera matcher program is a stand-alone application. It reads an input file containing:

• The resolution of the source images.

• The number of tracked points.

• The number of frames

• The coordinates of every tracker on every frame.
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After reading the input file the reconstruction of the relative camera motion is computed

for every image pair. The calculation of a single pair starts with the necessary normal-

ization and then the normalized 8-point algorithm is run (refer to section 2.2.1.). The

final step of computing the fundamental matrix is the correction with the normalization

matrices. The quality of the solution is described with the following formula:

∑

i

(x′i F xi)
2 (4.1)

since the defining equation of the fundamental matrix is:

x′i F xi = 0 (4.2)

After calculating the fundamental matrix and it’s error, the focal distance is calculated

using the process of Kanataniet al., which requires only the entries of the fundamental

matrix. If the result seems to be wrong – which might be due to noise inF or the wrong

estimation of the principal point – the user defined (or guessed) focus distance is used.

Having the fundamental matrix, the focus distance (or distances) and the estimated

principal point position – which is supposed to be in the image center – the essential ma-

trix is calculated. Based on the essential matrix the Euclidean reconstruction is possible.

The translational vector and the matrix of the camera rotation is calculated. The program

exports to a text file the translation and the RPY values of the two rotational matrices.

These values can be used in any 3D package – like in Maya – to drive the motion of the

virtual camera.
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Figure 4.6: The pipe-line of camera reconstruction.



Chapter 5

Camera matching in computer graphics

Since 1996 there are software solutions on the market that are capable to match the virtual

camera to the original one based on a image sequence. These solutions are commonly

referred as “mach move” softwares, and they make it possible to integrate 3D computer

graphics elements seamlessly into live action footage. During the years of development

these products have become more and more reliable, and surprisingly while the original

products were fully automatic the newer versions include more and more manual or semi-

automatic tools. The reason of this trend is that the users – who work mostly in post

production facilities – would likely spend some more time in front of their computers

to get better results. Although it is known that the mathematical relations behind these

programs fail in certain situations – called degenerate configurations – it is not acceptable

for a post production studio to work with tools that fail sometimes. This is why tools and

algorithms that are not guarantied to converge to the solution are accompanied by some

manual or semi-automatic tool.

In the first part of this chapter the typical pipeline of post production studios utilizing

match move products is described. After that in the next section the features of the 3

major camera matching products are investigated. Finally the newest and most interesting

researches of the field are summarized.

42



5.1. INTEGRATING COMPUTER GRAPHICS AND LIVE ACTION 43

5.1 Integrating computer graphics and live action

The main reason why camera matching is needed in the field of computer graphics is the

problem of integrating 3D graphics into live action images. If the virtual camera does not

move the exact same way as the original camera the 3D elements that are supposed to

stick to a real one will “flow” instead of being static. This error is visible even in those

cases, when the 3D objects and the real ones do not touch each other. Typical example

is when a floating object has to be put in the air, or an aircraft has to be inserted in a

shot, where the background is live action. One may think that the digital aircraft or the

floating object is neither attached to the ground nor the camera, so it’s movement is not

constrained at all. However, if we insert the animated 3D object without matching the

virtual camera to the background the result will be not convincing at all1. Of course if the

camera does not move at all, the camera matching is unnecessary.

Because the matching is a key issue when combining CG elements with real footage

this problem had to be solved a long time ago. The first hardware solutions were invented

way before 3D computer graphics was used in feature films. These expansive camera

rigs – called motion control rigs – were driven by computers and were used to combine

different live action footage. It is not surprising that the first method of camera matching

was to drive the real cameras with computers, and use their data in the 3D software to

generate digital elements. This method was rather expensive and not flexible at all, since

for every effect-shot motion control had to be used. The software based solution for cam-

era matching based on only image sequences revolutionized the way 3D special effects

were done. The extra 3D elements could be put in any shot, noa priori information was

needed about the original camera parameters.

1The reason of this is the fact, that the 3D object and the camera has to obey the laws of physics. If

the camera is not matched to the original one, the relative motion of the 3D element to the background will

break these laws.
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5.2 Typical pipe-line

The computer vision algorithms used for camera matching today require only images,

however, any measured data from the shooting – including distances of objects, camera

and lens parameters – improves to solution significantly. This is why all shooting possibly

involving special effects start by thorough pre-planning and measuring every useful data

on the set. The first step after the images are in the computer is the removal of lens

distortion and the tracking. If no image of any calibration grid is available, straight lines

may be used to remove the distortion.

Tracking includes not only the – automatic or manual – point tracking but also often

some manual segmentation as well. The user has to define which portion of the image is

supposed to be the static background and what are the moving objects. For the sake of

illustration the camera matching tests made by Digital Dimension studio2 for the movie

Final Destination 2. are used (figures 5.1 to 5.4). On figure 5.1 the tracking of the shot

is visible, the road and the moving truck had to be separated manually. If an automatic

tracker is used the user has to createmasks, that define regions on the image to separate

the different objects.

Figure 5.1: Tracking points in the scene. (Digital Dimension Studio,c©New Line Cinema)

2For more details about the studio and particularly this project visit www.digitaldimension.com.
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After successful tracking the process of camera matching may be started. In scenes

with multiple moving objects all elements has to be solved separately, in our case the

truck and the road are the two elements. After the camera matching, the relative motion

of the camera to these elements will be available. From this data it is easy to reconstruct

the camera motion and the truck’s motion relative to the ground. The verification of the

matching – in post production environment – is almost always qualitative. Simple 3D test

objects are inserted in the shot, and the viewers decide wether they seem to be part of the

scene or not (see figure 5.2). In some cases the solution seems to be perfect despite of

the very bad reconstruction of the focal distance, in other cases even the smallest errors

are recognizable. Generally speaking, the human perception is very sensitive to motion –

especially high frequency motion – but not that sensitive to distortion in perspective.

Figure 5.2: The verification of the camera matching with simple 3D objects inserted into the live

action footage. (Digital Dimension Studio,c©New Line Cinema)

Following the successful matching of the camera, the virtual copy of the real scene is

modelled by graphic artists. This model may be very complex or very simple depending

on the requirements of the effect. In our example only coarse models of the truck and the

ground were needed for the dynamic simulation of the logs. The modelling of the real
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scene is not always manual. The match moving products almost always export not only

the camera data but also the 3D positions of the tracked points. These points serve as very

useful reference for modelling.

After the model of the world and of the 3D objects to be inserted are ready theinter-

actionof them is created. There are many different ways 3D objects may interact with the

scene

• Physical interaction

The 3D objets of any type – gases, liquids, rigid and soft bodies – may interact with

the real world elements via any form of touching or colliding. These interactions –

which are more likelyactionswithout inter since only the 3D objects will react –

can be simulated with physical simulations in the 3D software. The simple models

of the real elements are used to detect the collisions. In production environment

many times the simulations are not physically correct. The animators – based on

the directors will – change the parameters like bounciness, weight or gravity to

achieve the desired motion.

• Lighting

The digital elements fit into the pictures only if theirlook is believable. This means

that the 3D surfaces has to have material properties that are similar to real world

materials, and the lighting conditions have to match the original scene. Today the

most common way to generate material models orshadersis manual like texture

painting, shader programming. To match the original lighting conditions the techni-

cal directors (TD) of the post production studios often make reference photographs

on the set about diffuse and mirror like balls or other reference objects. These pic-

tures can help the TDs to design the shaders and the lighting. The pictures of mirror

balls can help to reproduce reflections and place lights manually, but most current

techniques allow to extract all lighting information from a HDR3 image of a mirror

ball.
3HDR stands for High Dynamic Range image. For more information on that subject refer to Paul

Debevec’s sire www.debevec.org.
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• Shadows

The digital objects always cast shadows to real world elements. To render these

shadows the “stand-in” model of all real object has to be created in the virtual

environment. Using different rendering techniques the shadows can be computed

falling on the stand-in surfaces, and later these shadows can be composited on the

original images. If the camera matching was good enough the shadows will look

like if they were on the real object.

Figure 5.3: The model of the 3D logs that had to be inserted into the shot. (Digital Dimension

Studio, c©New Line Cinema)

After the 3D models, the animation, the materials and the lights are set up the render-

ing of the digital elements can start. Usually the image generation is divided into different

passes:

• Diffuse pass: Only diffuse components of the materials.

• Specular pass: Only specular components of the materials.

• Reflection pass
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• Shadow pass (sometimes there are different shadow passes: contact shadow, direct

shadow).

• Atmospheric effects

• Depth from the camera

These different elements are put together in the stage of compositing. The reason of

this is that rendering times are very long, so the re-rendering should be avoided. If every-

thing is rendered separately the compositor – the artist who makes the final pictures from

the elements – has the freedom to modify layers, change colors, transparency or apply ef-

fects to different layers. The integration of 3D computer graphics and the original images

is tricky if there was lens distortion removed prior to tracking. The computer generated

elements are rendered with a perfect “virtual” pinhole camera, while the original footage

suffers from distortion. One may think that the best solution is to composite the CG el-

ements to the undistorted footage used for tracking. However, the un-distortion process

worsens the quality of the live action images. To overcome this problem lens distortion is

applied to the CG elements that are later composited on the original footage. The advance

of the approach is that the rendered images can be generated at any resolution, thus the

quality after applying lens distortion remains excellent.

Figure 5.4: The final result, 3D logs fallen off the truck are bouncing on the road. Many layers

are composited together. (Digital Dimension Studio,c©New Line Cinema)



Chapter 6

Conclusions and future work

In this chapter the promising new researches are summarized that are related to computer

vision and camera matching. In section 6.2 the experiences and conclusions of the work

done are collected, while the last section describes the possible future developments.

6.1 Applications in development

The most important use of camera matching in the near future may be the fully automatic

model and texture reconstruction at high level. It would be an extremely useful tool for

computer graphic artists to be able to generate photo-realistic models with a hand held

camera and a software solution.

The 3D reconstruction of a scene is subject of research for years, and this is the field

where the most dynamic work have been done recently. For a detailed overview of surface

reconstruction refer to [Cro00]. A summary of the reconstruction of feature points and

lines are described in the 1996 technical report [PBZ96]. However, the reconstruction

of objects or surfacesinstead of points is not a trivial problem. The 3D reconstruction

involves almost always only feature points and sometimes lines, but high quality surfaces

cannot be built based on some hundred 3D points. However, if we have very dense infor-

mation of the object – like when it is rotating in front of the camera – the reconstruction

is possible [AWFZ98] (see images 6.1 and 6.2).

In production environment the “rotating table” approach is not always sufficient. Some

49
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Figure 6.1: The image sequence of the object rotating in front of the camera [AWFZ98].)

Figure 6.2: The reconstructed and textured 3D model. [AWFZ98])
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objects like houses or hills cannot be rotated or filmed in any way from every direction.

There are some promising results for such cases as well like the work Mark Pollefeys and

Luc Van Gool [MPG00] [PG02]. Their results show that medium quality models with

good realistic textures can be acquired with a hand held video camera, and they produced

convincing results (see figures 6.3 and 6.3).

Figure 6.3: The captured images (Mark Pollefeys).

Figure 6.4: The reconstructed object from a different view (Mark Pollefeys).
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However, even these models are far from the resolution of the required level for –

good quality – computer graphics, thus are used for only a reference in the practice of 3D

computer graphics. Some other techniques are semi-automatic like the one proposed by

Gibson [GH03]. His approach requires the user to define the 3D objects with the help of

the reconstructed points. Very high quality textures are produced for the objects and even

theoriginal lighting environmentmay be evaluated.

6.2 Conclusions

A complete tool-set to handle lens distortion for camera matching has been implemented.

The mathematical model of the distortion was chosen to handle almost all kinds of lenses

that may occur in the post production studios integrating computer graphics into live

action images. It is possible to remove and also to apply the very same distortion, thus

the CG elements can be distorted to fit into the original images.

The implemented plug-in has a feature that every available lens distortion removing

application lacks: it is capable of applying distortion to images with extra border. When

the barrel distortion is applied to rendered images the pixels at borders are pulled to-

wards the center generating black gap at the borders. To avoid this larger images are

rendered, distorted and cropped. If – for example – a double size image is rendered, the

user wants the “window” of the original size in the center to be distorted the same way as

expected, not the whole image. With existing tools some tricks had to be used to handle

this situation1. In the implemented system there is a parameter that sets the relative size

of the image to the original one. If this parameter is set to 120% and the user applies

distortion to images at the size of 120% of the original and then crops the image back to

100%, it will be distorted the way a normal image would be distorted the regular way.

To calibrate the lens distortion system a semi-automatic algorithm is implemented,

which needs only straight lines to be on the images and no calibration grid is needed.

The algorithm processes the images very fast, multiple processors are supported as well.

1This trick is to calibrate the lens distortion parameters to the original images with extra border. This

way the same model can be used for the rendered images with extra border.
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For the best quality not only the nearest neighbor but bicubic interpolation is available as

well. For the application of lens distortion a new and very fast algorithm was developed

and implemented. The advantage of it is that the user might use the plug-in for artistic

effects as well, since he or he can set the parameters with almost real-time feedback.

The basic algorithms for camera matching were also successfully implemented. The

input of the application is a text file containing the track data of the feature points. The

solution is based on the normalized 8-point algorithm, which generates the fundamental

matrix from point correspondences. Since based on the fundamental matrix alone the Eu-

clidean reconstruction is not possible (only projective reconstruction). To reconstruct the

camera’s motion in 3D sufficiently the camera has to be calibrated. The system supposes

that the images are taken with conventional cameras, eg. no shear is present and the pixel

aspect is 1. The lens center is supposed to be the image center, but this may be altered

by the user. The unknown internal parameter of the camera, the focal distance is evalu-

ated from the Fundamental matrix. With these data the program evaluates the “calibrated

version” of the fundamental matrix, called essential matrix. From this the rotation matrix

and the relative motion is evaluated. The program exports the camera displacement and

the RPY values of the rotation to a text file, which can be read in any 3D program to drive

a camera. The system worked well for noise free data, however, quantitative analysis has

not been done.

6.3 Future work

The current version of the lens distortion plug-in is ready to be used in production, only the

automatic calibration needs some improvements. If the user defines the points of the lines

not precise enough, the algorithm might give wrong solution. The lines on the images

could be automatically detected based on the user’s help – to avoid “really” curved lines

– which could give a much more precise data to work with. The automatic calibration

is also not possible if no lines are on the image, thus some other calibration algorithms

might be useful in those cases.

The implemented camera matching algorithm needs much more testing, to have qual-
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itative and quantitative results of it’s precision and stability. The response to the so called

“degenerate” configurations – like pure translation parallel to the image plane – were not

tested either.

After having a stable camera matcher the implementation of the 3D surface recon-

struction algorithm can start. To achieve results that can be used in computer graphics

semi-automatic approach seems to be the best choice. The help of the user of defining

where edges are, what kind of topology the surface has or where smooth regions are

could help the reconstruction significantly. Researches did not work on such methods,

since in general applications in robotics the requirements are very different. For example

in computer graphics the topology of the surface is of key importance while in general

computer vision only a dense point-cloud or some triangulated surface can represent the

original object well.

Another interesting development could be the use of camera matching in re-lighting

any scene. If the camera motion is available a dense depth map can be built from the

images, and based on this map the normal vectors can be evaluated. If we have the

normal vector information the surfaces can be lit with some local illumination model like

the Phong model.
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